
Spectral methods in Lorene

Yu Liu 1

1Department of Astronomy
Huazhong University of Science and Technology

yul@hust.edu.cn

September 24, 2020

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 1 / 37

http://orcid.org/0000-0002-4421-7282

Table of Contents

1 Spectral Methods
Spectral expansion
Chebychev polynomials
Methods of weighted residuals
General PDE solvers
Multi-domain Spectral Method

2 Lorene
Introduction
Module
Numerical implementation
Bin star
Einstein Toolkit

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 2 / 37

Introduction

All numerical techniques is to approximate any function by
polynomials, those being the only functions than a computer can
exactly calculate. So a function u will be approximate by

û =
N∑

n=0

ûnΦn (1.1)

where the Φn are polynomials and called the trial functions.
Depending on the choice of trial functions, one can generate
various classes of numerical techniques. [Grandclement, 2006]

Two types of numerical methods:
Spectral methods: high order polynomials on a single domain.
Finite elements: low order polynomials on many domains.

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 3 / 37

Orthogonal projection

Let us consider an interval Λ = [xmin, xmax]. In order to talk about basis,
one needs to define a scalar product on Λ. If w is a positive function on
Λ, one can define the scalar product of two functions f and g, with
respect to the measure w as being

(f ,g)w =

∫
Λ

f (x)g(x)w(x)dx . (1.2)

Using this scalar product, one can find a set of orthogonal polynomials
pn, each of them of degree n. The set composed of those polynomials,
up to a given degree N is a basis of PN .

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 4 / 37

One can then hope to represent any function u on Λ by its projection on
the polynomials pn. Doing so, we define the projection of u simply by

PNu =
N∑

n=0

ûnpn(x), (1.3)

where the coefficients of the projections are given by ûn = (u,pn)
(pn,pn) .

The difference between u and its projection is called the truncation
error and one can show that it goes to zero when the order of the
approximation increases:

‖u − Pnu‖ −→ 0 when N −→∞. (1.4)

Note
This seems very appealing but for the fact that one needs to calculate
the ûn by computing integrals like

∫
Λ u(x)pn(x)w(x)dx .

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 5 / 37

Gauss quadratures

There exist N + 1 positive reals wn and N + 1 reals xn in Λ such that:

∀f ∈ P2N+δ,

∫
Λ

f (x)w(x)dx =
N∑

n=0

f (xn) wn. (1.5)

The wn are called the weights and the xn the collocation points. The
exact degree of applicability depends on the quadrature. The three
usual choices are:

Gauss: δ = 1
Gauss-Radau: δ = 0 and x0 = xmin

Gauss-Lobatto: δ = −1 and x0 = xmin and xN = xmax

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 6 / 37

Interpolation

If one applies the Gauss quadratures to approximate the coefficient of
the expansion, one obtains

ũn =
1
γn

N∑
j=0

u
(
xj
)

pn
(
xj
)

wj with γn =
N∑

j=0

p2
n
(
xj
)

wj . (1.6)

Let us precise that this is not exact in the sense that ûn 6= ũn. However,
the computation of û only requires to evaluate u at the N + 1
collocation points.
The interpolant of u is then defined as the following polynomial

INu =
N∑

n=0

ũnpn(x). (1.7)

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 7 / 37

Figure: Maximum difference between
INu and u as a function of the degree
of the approximation N.

We can observe the very general
feature of spectral methods that
the error decreases
exponentially, until one reaches
the machine accuracy (here
10−14).
This very fast convergence
explains why spectral methods are
so efficient, especially compared to
finite difference ones, where the
error follows only a power-law in
terms of N.

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 8 / 37

The derivative of the interpolant

One can simply approximate u′ by the derivative of the interpolant:

u′(x) ≈ [INu]′ =
N∑

n=0

ũnp′n(x) (1.8)

Such an approximation only requires the knowledge of the coefficients
of u and how the basis polynomials are derived.

Note
The interpolation and the derivation are two operations that do not
commute: (INu)′ 6= IN (u′).

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 9 / 37

Chebychev polynomials
The Chebyshev polynomials Tn are an orthogonal set on [−1,1] for the
measure w = 1√

1−x2
. More precisely one has∫ 1

−1

TnTm√
1− x2

dx =
π

2
(1 + δ0n) δmn. (1.9)

Chebyshev polynomials can be computed by knowing that T0 = 1,
T1 = x and by making use of the recurrence:

Tn+1(x) = 2xTn(x)− Tn−1(x). (1.10)

The derivatives of Chebychev polynomial

T ′n(x) = 2nTn−1(x) +
n

n − 2
T ′n−2(x), n > 2 (1.11)

as well as T ′2(x) = 4T1(x), T ′1(x) = T0 and, evidently, T ′0(x) = 0.

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 10 / 37

The weights and collocation points

The weights and collocation points associated with Chebyshev
polynomials can be computed:

Chebyshev-Gauss: xi = cos (2i+1)π
2N+2 and wi = π

N+1

Chebyshev-Gauss-Radau: xi = cos 2πi
2N+1 . The weights are

w0 = π
2N+1 and wi = 2π

2N+1

Chebyshev-Gauss-Lobatto: xi = cos πi
N . The weights are

w0 = wN = π
2N and wi = π

N

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 11 / 37

Type of problems

Let us consider a differential equation of the form

Lu(x) = S(x), x ∈ [−1,1] (1.12)

where L is a linear differential operators.
The action of L on u can be expressed by a matrix Lij . If the
coefficients of u with respect to a given basis are the ũi then

L(
N∑

k=0

ũkTk (x)) ∼ S(x)

N∑
k=0

ũk

N∑
m=0

LmkTm(x) ∼ S(x), x ∈ [−1,1] (1.13)

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 12 / 37

Type of problems

Let us consider a differential equation of the form

Lu(x) = S(x), x ∈ [−1,1] (1.12)

where L is a linear differential operators.
The action of L on u can be expressed by a matrix Lij . If the
coefficients of u with respect to a given basis are the ũi then

L(
N∑

k=0

ũkTk (x)) ∼ S(x)

N∑
k=0

ũk

N∑
m=0

LmkTm(x) ∼ S(x), x ∈ [−1,1] (1.13)

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 12 / 37

Methods of weighted residuals

A function u is then an admissible solution of this system, if and only if
1) it fulfills the boundary conditions exactly (up to machine accuracy)
2) it makes the residual R ≡ Lu − S small.
In order to quantify what this “small” means, the weighted residual
method relies on N + 1 tests functions ξn and one asks that the scalar
product of R with those functions is exactly zero:

(ξk ,R) = 0, ∀k ≤ N (1.14)

Depending on the choice of spectral basis and of test functions, one
can generate various different types of spectral solvers.

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 13 / 37

The collocation method

In the collocation method one uses continuous functions that are zero
at all but one collocation point. They can be written as ξi

(
xj
)

= δij .
With such test functions, the residual equations are

N∑
k=0

ũk

N∑
m=0

LmkTm(xn) = S (xn) , ∀n ≤ N (1.15)

the unknowns being the ũk . However, as such, this system does not
admit a unique solution, due to the homogeneous solutions of L (i.e.
the matrix associated with L is not invertible) and one has to impose
boundary conditions.
In the collocation method, this is done by relaxing two equations (i.e.
for n = 0 and n = N) and replacing them by the boundary conditions at
x = −1 and x = 1.

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 14 / 37

General PDE solvers

Hi fi = Si (f1, f2 . . . fk) ∀0 ≤ i < k (1.16)

where Hi are differential operators (typically second order).

Iteration technique
Give an initial guess for the fi ;
Computes the sources Si (f1, f2fk);
Invert the operators Hi ;
If the relative change in the fi is small stop, else compute the new
sources and loop.

We slow the change from step to step by using relaxation like:

f new
i = λH−1

i [Si] + (1− λ)f old
i

where typical values λ ≈ 0.5.
Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 15 / 37

Multi-domain Spectral Method

Spectral methods lose much of their accuracy when non-smooth
functions are treated because of the so-called Gibbs phenomenon.
The multi-domain spectral method circumvents the Gibbs
phenomenon. The basic idea is to divide the space into domains
chosen so that the physical discontinuities are located onto the
boundaries between the domains. [Bonazzola et al., 1998]

Examples
The simplest example is the case of a perfect fluid star, where two
domains may be distinguished: the interior and the exterior of the star.

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 16 / 37

Table of Contents

1 Spectral Methods
Spectral expansion
Chebychev polynomials
Methods of weighted residuals
General PDE solvers
Multi-domain Spectral Method

2 Lorene
Introduction
Module
Numerical implementation
Bin star
Einstein Toolkit

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 17 / 37

Introduction

LORENE is a set of C++ classes. It provides tools to solve partial
differential equations by means of multi-domain spectral methods.

The class Mg3D stores Multi-domain grid of
collocation points and takes into account
symmetries;

The class Map relates the numerical grid
coordinates (ξ, θ′, ϕ′) to the physical ones (r , θ, ϕ);

The class Mtbl stores values of a function on grid
points;

The class Mtbl cf stores spectral coefficients of a
function;

The class Base val contains information about the
spectral bases;

The class Valeur gathers a Mtbl, a Mtbl cf and the
Base val to pass from one to the other.

Fields are represented using 3D spherical coordinates r , θ, ϕ and a
spherical-like grid.

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 18 / 37

https://lorene.obspm.fr

Header
Any source file using Lorene should include the header

1 // C headers
2 #include <cstdlib>
3 #include <cassert>
4 #include <cmath>
5 // Lorene headers
6 #include "headcpp.h" // standard input/output C++ headers (

iostream, fstream)
7 #include "metric.h" // classes Metric, Tensor, etc...
8 #include "nbr_spx.h" // defines infinity as an ordinary

number: __infinity
9 #include "graphique.h" // for graphical outputs

10 #include "utilitaires.h"// utilities
11

12 using namespace Lorene ;
13

14 int main() {
15 /* Here goes your code */
16 return EXIT_SUCCESS ;
17 }

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 19 / 37

Mg3d
Multi-domain grid of collocation points on which the functions are
evaluated to compute the spectral coefficients.

1 int nz = 3 ; // Number of domains
2 int nr = 7 ; // Number of collocation points in r
3 int nt = 5 ; // Number of collocation points in theta
4 int np = 8 ; // Number of collocation points in phi

Additional symmetries can be taken into account:

1 int symmetry_theta = SYM ; // symmetry with respect to the
equatorial plane (z=0)

2 int symmetry_phi = NONSYM ; // invariance under the (x,y)->(-x
,-y) transform.

The last domain have a 1/r sampling.

1 bool compact = true ; // external domain is compactified

In each domain, the radial variable used is ξ ∈ [−1,1], or ∈ [0,1] for
the nucleus.

1 // Multi-domain grid construction:
2 Mg3d mgrid(nz, nr, nt, np, symmetry_theta, symmetry_phi,

compact) ;

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 20 / 37

Mappings

The boundary of each domain is chosen
in order to coincide with a physical
discontinuity.
A mapping relates, in each domain, the
numerical grid coordinates (ξ, θ′, ϕ′) to the
physical ones (r , θ, ϕ). The simplest class
is Map af for which the relation between
and ξ and r is linear (nucleus + shells) or
inverse (CED).

1 // radial boundaries of each domain:
2 double r_limits[] = {0., 1., 2., __infinity} ;
3 assert(nz==3) ; // since above array describes only 3 domains
4 // Construction of an affine mapping (Map_af)
5 Map_af map(mgrid, r_limits) ;

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 21 / 37

Scalar fields
The class Scalar gathers a Valeur and a mapping, it represents a
scalar field defined on the spectral grid.

1 // Various coordinates associated with the mapping
2 const Coord& r = map.r ; // r field
3 const Coord& x = map.x ; // x field
4 const Coord& y = map.y ; // y field
5 // Setup of a regular scalar field
6 Scalar phi(map) ;
7 phi = x*exp(-r*r-y*y) ;

Accessors and modifier of values in a given domain

1 // 0 at spatial infinity (instead of NaN !)
2 phi.set_outer_boundary(nz-1, 0) ;

Spectral base manipulation

1 // Standar polynomial bases will be used to perform the
spectral expansions

2 phi.std_spectral_base() ;

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 22 / 37

The dzpuis flag

In the compactified external domain (CED), the variable u = 1/r is
used (up to a factor α). When computing the radial derivative (i.e.
using the method phi.dsdr()) of a field f , one gets

∂f
∂u

= −r2 ∂f
∂r

(2.1)

Use of an integer flag “dzpuis” for a scalar field f , which means that in
the CED, one does not have f , but r dzpuisf stored.

1 // Computation of the radial derivative
2 Scalar dphidr = phi.dsdr() ;
3 dphidr.dec_dzpuis(2) ;

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 23 / 37

Vector field

Lorene can handle a vector field V expressed in either of two types of
components (i.e. using two orthonormal triads, of type Base vect).

the Cartesian triad
(
ex ,ey ,ez

)
=
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
the spherical triad (er ,eθ,eϕ) =

(
∂
∂r ,

1
r
∂
∂θ ,

1
r sin θ

∂
∂ϕ

)
1 // Vector field defined by its cartesian components
2 Vector v_cart(map, CON, map.get_bvect_cart()) ;
3 // Change to spherical triad
4 v_cart.change_triad(map.get_bvect_spher()) ;

The covariance type of the indices is indicated by an integer which
takes two values, defined in file tensor.h:

COV: covariant index
CON: contravariant index

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 24 / 37

Metric

Components of the flat metric in an orthonormal cartesian frame

1 Sym_tensor g_uu(map, CON, map.get_bvect_cart()) ;
2 // write of a particular element (index i,j)
3 g_uu.set(1,1) = 1 ;
4 g_uu.set(2,2) = 1 ;
5 g_uu.set(3,3) = 1 ;
6 g_uu.set(1,2).annule_hard() ; // Sets it to zero in a hard way.
7 g_uu.set(1,3).annule_hard() ;
8 g_uu.set(2,3).annule_hard() ;
9 g_uu.std_spectral_base() ;

10 // 3-metric
11 Metric gam(g_uu) ;

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 25 / 37

Tensor calculus
Tensorial product:

1 Tensor_sym tens3 = tens1 * tens2 ;

Contraction:

1 // Contraction on two indices of a single tensor (trace).
2 Scalar scal = contract(tens, 0, 1) ; // 0 = first index, 1

= second index, and so on...
3 // Contracting two tensors :
4 Tensor tens3 = contract(tens1, 1, tens2, 0) ;

Raising an index with the metric gam:

1 Tensor tens = tens.up(1, gam) ;

The covariant derivative of V with respect to the metric gam:

1 Tensor tens = v.derive_cov(gam) ;

The Ricci tensor associated with the metric gam:

1 Sym_tensor ricci = gam.ricci() ;

Lie derivative with respect to V :

1 Sym_tensor tens = tens.derive_lie(v) ;

and so on.

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 26 / 37

Numerical implementation

The spectral method amounts to reducing linear partial differential
equations into a system of algebraic equations for the coefficients of
the spectral expansions. The numerical code implementing the
method is written in the LORENE.

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 27 / 37

Bin star

Required executables and parfiles before run it.

The parameter files for the code init bin.C
are: par eos[1, 2].d par grid[1, 2].d
par init.d

1 make init_bin
2 ./init_bin

There is only one parameter file for the
code coal.C: parcoal.d

1 make coal
2 ./coal

Bin star
Makefile
init bin.C
par eos1.d
par eos2.d
par grid1.d
par grid2.d
par init.d
coal.C
parcoal.d

(under Lorene/Codes/)
./init bin output is the unrelaxed binary configuration with given stellar
models and specified binary separation. To generate a relaxed binary
configuration, we need the ./coal.

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 28 / 37

Grid
Two spherical coordinate systems are introduced, one centered on each star; this results in a
precise description of the stellar interiors. The computational domain covers the whole space so
that exact boundary conditions are set to infinity. [Gourgoulhon et al., 2001]

1 # Mul t i−g r i d parameters
2 #######################
3 5 nz : t o t a l number o f domains
4 1 nzet : number o f domains i n s i d e the s t a r
5 17 nt : number o f po in t s i n the ta (the same i n each domain)
6 16 np : number o f po in t s i n ph i (the same i n each domain)
7 # Number o f po in t s i n r and (i n i t i a l) i nne r boundary o f each domain :
8 33 0. <− nr & min (r) i n domain 0 (nucleus)
9 33 1. <− nr & min (r) i n domain 1

10 33 2. <− nr & min (r) i n domain 2
11 33 4. <− nr & min (r) i n domain 2
12 33 8. <− nr & min (r) i n domain 2

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 29 / 37

Equation of State

EoS data are to be stored in a formatted file par eos.d. The fist line
must start by the EOS number, see LORENE’s Refguide.

1 = relativistic polytropic EOS (class Eos poly)
17 = CompOSE (Tabulated EOS)
110 = Multi-polytropic EOS (class Eos multi poly)

The second line in the file should contain a name given by the user to
the EOS. The following lines should contain the EOS parameters (one
parameter per line), in the same order than in the class declaration.

1 1 Type of the EOS
2 relativistic polytropic EOS
3 2. adiabatic index gamma
4 0.0332 pressure coefficient kappa [rho_nuc cˆ2 / n_nucˆgamma]
5 1. mean particle mass [m_b]2

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 30 / 37

https://lorene.obspm.fr/Refguide/index.html

Multi-polytropic EOS
We used seven polytropic pieces, each corresponding to a different density interval. The four lower density pieces are the same
for each EOS and come from the fitting of the crust. They represent, in increasing density order, a non-relativistic electron gas, a
relativistic electron gas, the neutron drip regime, and the NS inner crust in the density interval between neutron drip and the
nuclear saturation density. The three high density pieces, instead, are different for each NS core EOS model. [Read et al., 2009]

1 110 Type of the EOS
2 Mul t i−p o l y t r o p i c EOS
3 7 number o f po ly t ropes
4 1.58425 ar ray o f a d i ab a t i c index
5 1.28733
6 0.62223
7 1.35692
8 3.005
9 2.988

10 2.851
11 6.8011e−09 kappa
12 3.53623 logP1
13 7.3875 ar ray o f logRho
14 11.5779
15 12.4196
16 14.165
17 14.7
18 15
19 0. ar ray o f percentage
20 0.
21 0.
22 0.
23 0.
24 0.

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 31 / 37

Tabulated Equation of state

Taken from the stellarcollapse database. (XXX.h5).
Then use the python script called slicetable.py and scripts.py to
get the equation of state in tabulated EOS format as read by
LORENE. You will need to mention at the temperature at which
you want to slice the table.

1 17 Type of the EOS
2 0 0: standard format
3 Tabulated EoS
4 /full/path/to/the/eos/table/name_of_the_table

Taken from the CompOSE database (XXX.nb and XXX.thermo).

1 17 Type of the EOS
2 1 1: CompOSE format
3 Tabulated EoS
4 /full/path/to/the/eos/table/name_of_the_table

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 32 / 37

https://stellarcollapse.org/SROEOS
https://ccrgpages.rit.edu/~jfaber/BNSID/Data/Tabulated/scripts/slicetable.py
https://ccrgpages.rit.edu/~jfaber/BNSID/Data/Tabulated/scripts/script.py
https://compose.obspm.fr/home/

resu.d

The output result is contained in a binary file called resu.d, which is
readable by appropriate routines in Einstein Toolkit.

1 // Saveguard of the whole configuration
2 FILE* fresu = fopen("resu.d", "w") ;
3

4 star.get_mp().get_mg()->sauve(fresu) ;// writing of the grid
5 star.get_mp().sauve(fresu) ; // writing of the mapping
6 star.get_eos().sauve(fresu) ; // writing of the EOS
7 star.sauve(fresu) ; // writing of the star
8

9 fclose(fresu) ;

Check the outputs at the end, make sure there are no ’NaN’. Only then
use the resu.d for evolving the binary.

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 33 / 37

Initial Data Library

RIT Binary Neutron Star Initial
Data Library

Covers different piecewise
polytropic approximants to
physically motivated equations
of state (Sly, AP3, AP4, WFF1,
MPA1, MS1, MS1b)
Covers different mass ratios
(1, 1.14, 1.28, 1.428)
Covers different separations
starting from 50km and
decreasing by 5km till 30km

The most stable results begin from low mass
configurations, moving inwards to the desired
radius, and then slowly increasing the target
mass of the binary.

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 34 / 37

https://aspire.rit.edu/content/data/bns-initial-data
https://aspire.rit.edu/content/data/bns-initial-data

Einstein Toolkit

Einstein Toolkit contains three routines (under Cactus/arrangement/)
that can read in publicly available data generated by the Lorene code.
[Löffler et al., 2012]

Meudon Bin BH: Binary black hole
initial data (Lorene’s Bhole binaire);
Meudon Bin NS: Binary neutron star
initial data (Lorene’s Binaire);
Meudon Mag NS: Magnetized
isolated neutron star initial data
(Lorene’s Et rot mag).

EinsteinInitialData
Meudon Bin BH
Meudon Bin NS
Meudon Mag NS

Source codes contained in LORENE’s Export subfolder

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 35 / 37

http://einsteintoolkit.org/index.html

Meudon Mag NS
Code for reading a binary file containing data from a spectral
computation of a rotating magnetized neutron stars with Lorene and
exporting all the fields on a Cartesian grid.

1 // Reading of data
2 FILE* fich = fopen(filename, "r") ;
3 Mg3d spectral_grid(fich) ;
4 Map_et mapping(spectral_grid, fich) ;
5 Eos* p_eos = Eos::eos_from_file(fich) ;
6 Et_rot_mag star(mapping, *p_eos, fich) ; // For Meudon_Mag_NS
7 ...
8 for (int i=0; i<np; i++) {
9 double x0 = xx[i] * km ; // x, y, z in Lorene unit

10 double y0 = yy[i] * km ;
11 double z0 = zz[i] * km ;
12 // polar coordinates centered on the star
13 double r, theta, phi ;
14 mapping.convert_absolute(x0, y0, z0, r, theta, phi) ;
15 // Lapse function get from Et_rot_mag
16 lapse[i] = sp_lapse.val_point(r, theta, phi) ;
17 } // End of loop on the points

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 36 / 37

Reference

Bonazzola, S., Gourgoulhon, E., and Marck, J.-A. (1998).
Numerical approach for high precision 3d relativistic star models.
PRD, 58(10):104020.

Gourgoulhon, E., Grandclément, P., Taniguchi, K., Marck, J.-A., and Bonazzola, S. (2001).
Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in
general relativity: Method and tests.
PRD, 63(6):064029.

Grandclement, P. (2006).
Introduction to spectral methods.
EAS Publications Series, 21:153–180.

Löffler, F., Faber, J., Bentivegna, E., Bode, T., Diener, P., Haas, R., Hinder, I., Mundim,
B. C., Ott, C. D., Schnetter, E., Allen, G., Campanelli, M., and Laguna, P. (2012).
The einstein toolkit: a community computational infrastructure for relativistic astrophysics.
Classical and Quantum Gravity, 29(11):115001.

Read, J. S., Lackey, B. D., Owen, B. J., and Friedman, J. L. (2009).
Constraints on a phenomenologically parametrized neutron-star equation of state.
PRD, 79(12):124032.

Yu Liu (HUST) Spectral methods in Lorene September 24, 2020 37 / 37

	Spectral Methods
	Spectral expansion
	Chebychev polynomials
	Methods of weighted residuals
	General PDE solvers
	Multi-domain Spectral Method

	Lorene
	Introduction
	Module
	Numerical implementation
	Bin_star
	Einstein Toolkit

